Robust sparse covariance estimation by thresholding Tyler’s M-estimator
نویسندگان
چکیده
منابع مشابه
Adaptive Thresholding for Sparse Covariance Matrix Estimation
In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covarianc...
متن کاملITERATIVE THRESHOLDING ALGORITHM FOR SPARSE INVERSE COVARIANCE ESTIMATION By
The `1-regularized maximum likelihood estimation problem has recently become a topic of great interest within the machine learning, statistics, and optimization communities as a method for producing sparse inverse covariance estimators. In this paper, a proximal gradient method (G-ISTA) for performing `1-regularized covariance matrix estimation is presented. Although numerous algorithms have be...
متن کاملSparse PCA via Covariance Thresholding
In sparse principal component analysis we are given noisy observations of a low-rank matrix of dimension n × p and seek to reconstruct it under additional sparsity assumptions. In particular, we assume here each of the principal components v1, . . . ,vr has at most s0 non-zero entries. We are particularly interested in the high dimensional regime wherein p is comparable to, or even much larger ...
متن کاملIterative Thresholding Algorithm for Sparse Inverse Covariance Estimation
The `1-regularized maximum likelihood estimation problem has recently become a topic of great interest within the machine learning, statistics, and optimization communities as a method for producing sparse inverse covariance estimators. In this paper, a proximal gradient method (G-ISTA) for performing `1-regularized covariance matrix estimation is presented. Although numerous algorithms have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2020
ISSN: 0090-5364
DOI: 10.1214/18-aos1793